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Abstract 

In the rapidly expanding wind energy market, manufacturing processes of composite components 

must be continually improved to keep up with high demand and increasing part size. This research 

focuses on improving the offline production of the root section of wind turbine blades. In this 

research, a system is developed and tested to replace the two-part manual layup of the prefabricated 

root with an automated fabric winding machine. The system is designed to wind a limited number of 

long, stitched plies semi-helically around a male mold at a lower cost and higher quality than current 

processes. A prototype machine is created that pulls two types of Non-Crimp Fabric from supply rolls 

onto a rotating mandrel that matches the interior surface of a scaled down blade root. The prototype 

system proves Non-Crimp Fabric plies can be wound and a male mold can be used as a suitable 

replacement for a female mold by creating several successful prototype root sections. Process times 

and labor costs between the current manual layup and the winding method are also compared and 

show a significant reduction in glass layup, further proving the feasibility of the new system. 
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Introduction 

Around the world, renewable energy is becoming the main goal for new energy production, and wind 

is quickly emerging as the most viable renewable energy source. In July of 2008, the U.S. Department 

of Energy published a report describing a scenario where 20% of America’s energy could be provided 

by the year 2030 [1]. While this scenario is theoretically attainable, it does require ever-increasing 

installations which, in turn, require faster manufacturing of wind blades and their components. 

Ramping up production of wind turbine blades is not as simple as increasing most manufacturing 

processes. Wind blades are extremely large and are continually increasing in size. Blades on the 

smaller end of megawatt scale wind turbines are now at 40+ meters long and require a significant 

amount of material and labor.  

This paper focuses on improving the manufacture of one large subcomponent of wind turbine blades, 

the root section. The root of a wind blade, shown in Figure 1, is the thick base that attaches to the hub. 

Depending on blade length and manufacturer, the root section of a blade can be in excess of 60mm 

thick, requiring many layers of fiberglass and a significant amount of labor to manufacture. Because 

of the amount of material, time, and labor that goes into this section of the blade, it is often 

prefabricated as a separate component offline and later infused into the blade. The large thickness 

difference between the root and the rest of the blade material could also cause thermal issues from the 

exothermic cure if they are infused simultaneously. It is the goal of this paper to investigate and 

develop a new automated method for creating these root preforms. 

 Figure 1: Wind Turbine Blade Components [2] 
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Because this research focuses on manipulation of composite fabrics to create the root preforms, a 

basic review of composite manufacturing must first be discussed. In general, engineered composites 

are two or more materials that remain discernible after combined, usually as a matrix material and a 

reinforcement material. The root preforms investigated in this research are made from composites 

comprised of high strength fiberglass reinforcement and a bonding polymer resin matrix to hold the 

preform shape and transfer load throughout the reinforcement material. 

Fiberglass can be deposited in or on molds in many ways. The glass is manufactured as individual 

glass fibers that are bundled into tows. The tows can then be used alone, turned into tapes, which are 

a flat grouping of aligned tows, or plies where the tows are woven or stitched together in a sheet. 

Each of these types can either come as dry fiber that is later infiltrated with resin or as a prepreg 

where the resin is pre-impregnated into it. Tows are often used in a pultrusion technique where the 

glass is pulled through a vat of resin before being deposited on or in a mold. The tows can then be 

laid loosely into a mold or they can be wound tightly around a male mold with a process like filament 

winding. Tapes commonly come as prepregs that must conform to a mold surface either manually or 

with multi-axis deposition heads. Fabric plies most commonly come as dry sheets that are laid in 

molds by hand. If this is done, the operator can manually apply resin to the fabric to perform a wet 

layup or the glass can be mechanically infused using a vacuum to pull the resin through the glass or a 

pump to push the resin through the glass. 

There are many variations of composite fabric plies. The tows can either be woven or stitched 

together in many orientations. Stitched fabric, known as Non-Crimp Fabric (NCF), is made up of 

multiple layers of fiberglass, each containing tows of one orientation, and the layers are held together 

by stitching that runs the length of the fabric. Woven fabric has no stitching and the tows are held 

together in the ply by weaving through each other. These two ply styles are shown in Figure 2. NCF 

is becoming more prevalent in composite manufacturing because the straight tows provide better 

properties than the inherently wavy woven tows [3, 4].  
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The main benefit of fabric plies is the ease of depositing a full layer of mechanically aligned fiber 

tows all at once in the form of a sheet. The tows within fiberglass plies can be aligned in any 

orientation for different strength properties. Two common orientations used in wind turbine blade 

manufacturing and in this research are unidirectional and double biased. In unidirectional fabric, all of 

the load bearing tows are aligned in one direction and serve to provide strength in that direction only. 

Unidirectional fabric works well for features of turbine blades designed to handle high tensional 

loads, including the root and spar cap. In most unidirectional fabric, the tows run the length of the 

fabric, also considered 0° or the warp direction. However, for certain special applications the 

unidirectional tows can run at 90° to the length of the fabric, or the weft direction, these are referred 

to as weft-uni’s. Another common orientation, double biased (bias), is made of tows running at ±45° 

to the warp direction. This fabric makes for a conformable reinforcement material that provides 

torsional strength for components. An example of these three fabric types are shown in Figure 3. 

 

Figure 2: Woven fabric vs Non Crimp Fabric 

Figure 3: Tow orientation of warp-uni, weft-uni, and bias fabric 
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Layups in this research will use 

vacuum pressure to infuse the 

fiberglass with a variant of 

Vacuum Assisted Resin Transfer 

Molding (VARTM) called the 

Seemann Composites Resin 

Infusion Molding Process 

(SCRIMP) patented by TPI 

Composites [5]. The VARTM 

process pulls resin into a one 

sided mold with a vacuum pump 

and atmospheric pressure 

conforms the glass to the mold. The SCRIMP process adds resin channels and a quick infusion layer 

that pulls the resin over the part first and then down through the layers. 

One concern when using the VARTM process are waves induced by the compression of the fabric. 

Figure 4 shows the compression induced in 100 alternating layers of 490.3gsm and 425gsm fabric by 

vacuum infusion. This amount of compression can cause the fabric to shift over itself and any 

restriction to movement can result in waves or wrinkles from cinched fabric. Waves in fiberglass 

components are measured by their aspect ratio which is quantified by the length of the wave (L) over 

the height (a), pictured in Figure 5. Larger aspect ratios are preferred as there is less concentrated 

deviation from the desired surface and less structural compromise [6]. The amount of compression 

can also vary depending on fabric used. For instance in Figure 4, the layup is a 1:1 ratio of bias and 

weft-uni plies of roughly equal 

weight. This layup compressed to 

nearly 70% of its dry height. If the 

layup were changed to 1:2 bias to 

weft-uni, the compression or overall 

heights may be lower as the 

unidirectional tows are able to settle 

into each other and compression 

would need to be remeasured. 

Figure 4: 100 plies before and after infusion 

Figure 5: Aspect ratio of fiberglass wave 
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At this point, an overview of current root preform hand layups must be discussed. Figure 6 shows a 

preview of the root preform and some of the variables and nomenclature used in this research. The 

labels for each end of the root preform correspond with the generic labels of a full blade, the root end 

is attached to the hub and the tip end extends towards the tip of the blade. The origin sits at the root 

face with the negative z-axis extending through the center of the blade. The variables used to describe 

the preforms include: 

 OD: Outer diameter 

 ID: Inner diameter of uniform thickness section 

 T: Max thickness 

 Wb: Z dimension of preform from root to tip 

 Ws: Z dimension of uniform thickness section 

 P: Number of plies in the root preform 

 f: Infused fabric ply thickness 

For confidentiality reasons, the true dimensions of the root preforms studied for this research cannot 

be disclosed. To give readers a concept of size and to give this research values to use in later 

calculations, artificial dimensions are created to represent the actual size of a root preform. These 

Figure 6: Root preform variables 
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values are represented in Table 1 in millimeters along with approximations for number of layers and 

fabric thickness.  

 

Figure 7 shows the layup sequence used to create the desired root preform shape. The plies are 

lowered into a half cylinder mold and smoothed from the center to the edges allowing any waves to 

be pushed from the fabric. Under this layup scheme, the first ply in the layup covers the entire mold. 

Each subsequent ply remains against the root end but has a slightly shorter z length. The decrease in 

ply length has been determined by design specification to build up the root end while tapering the tip 

end so the preform can later be transitioned into the rest of the blade with a scarf joint to provide a 

large bonding surface and avoid a large drop in fiberglass.  

 

An extension can also be included on the 

each side of the preform mold to build up 

excess fabric vertically along the edge that 

can later be used to transport the preform 

to the blade mold. Because the edges of the 

preform mold end vertically, a spray 

adhesive is applied under each layer in this 

area to keep the fabric from falling back 

down into the mold. However, the use of 

Table 1: Theoretical Root Preform Dimensions (mm) 

Figure 7: Manual Root Preform Layup Sequence 

Figure 8: Extension, adhesive, and peeling layers 
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spray adhesive has been shown to inhibit resin flow in infusions [7, 8]. Figure 8 shows the vertical 

extensions on the mold, the location of the spray adhesive application, and how the fiberglass layers 

would fall into the mold if the spray adhesive weren’t used.  

After layup, the part is infused and 

cured and is ready to be integrated into 

the blade halves. Most wind blade 

facilities create blades in two halves in a 

clamshell mold similar to the one 

pictured in Figure 9. The root mold 

surface matches that of the blade mold 

surface so a preform can be lowered into 

each blade half. 

After combined with the blade halves, 

the sides are cut to create a flush mating 

surface with each other. Finally, after 

the blade has been assembled and cured, 

the root face is milled for a uniform 

mounting surface to the hub and bolt-

holes are drilled in the face. 

The quality of the root preform layup is critical to the quality of the whole blade. The root section is 

the connection point of the entire blade to the hub, so if it is not made to high standards, catastrophic 

failure could occur. An acceptable root preform must not have waves with failing aspect ratios or dry 

fabric to be able to withstand the forces seen by a wind turbine blade.  

Although the current layup style is simple and easy to follow, it is also labor intensive. Root sections 

use large plies and can be over 100 layers thick, requiring several workers and high cycle times. The 

goal of this research is to create and test an automated system that will manufacture root preforms 

with a similar physical makeup as the current process, but at a lower cost in terms of throughput and 

manufacturing costs and of equal or better quality in terms of dimensional control and flaw reduction. 

The system proposed to accomplish this will wind fiberglass around a male mold to make two 

preforms in one automated layup. The new process will be supplied by a limited number of long, 

stitched plies instead of workers laying many individual fiberglass plies into a female mold. 

Figure 9: Blade Clamshell [9] 
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Literature Review 

Automated systems offer several improvements over traditional manufacturing methods, most 

importantly speed and precision. Automation helps reduce cycle times by systematically completing 

operations without waiting for operator judgment or availability. It reduces labor hours of a process if 

tedious or repetitive work needs to be carried out by one or more skilled laborers. It also has the 

strong potential for increasing product quality by improving repeatability and process control. 

The proposed system of winding large amounts of fabric plies around a mandrel is a new idea that 

uses aspects of several automated composite manufacturing methods. Benefits and drawbacks of the 

processes that inspire this system are reviewed in this section. 

When creating cylindrical, composite structures, automation often turns to filament and tape winding. 

The filament winding process uses tows or tapes of composite fibers, usually glass or carbon fiber, 

and winds them around a rotating mandrel. This process has been used effectively for over 60 years to 

quickly and precisely make parts of a wide range of sizes that are able to rotate around a longitudinal 

axis [10]. 

Filament winding machines can use dry, wet, 

or preimpregnated (prepreg) fibers to create 

parts depending on the system used. The fiber 

is pulled from a supply roll and is run through 

a carriage that moves back and forth over the 

length of the part, covering the mandrel in a 

specified pattern. Figure 10 shows an example 

of a simple mandrel and standard filament 

winding paths that can be used for differing 

strength properties [11]. Depending on the 

complexity of the mandrel and the fiber 

orientation, these machines can be as simple 

as a lathe-type machine with a rotating 

mandrel and a sliding head [12] to deposit 

single filaments or a several axis head laying 

multiple tows or wider tapes around more 

complex curvatures. 

Figure 10: Filament Winding patterns. 
Top to bottom: Hoop, Helical, Polar Winding 
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A common focus of filament winding research is on the effects of fiber tension [13, 14, 15]. Mertiny 

gives a comprehensive overview of fiber tension and how it influences the properties of filament 

wound components. In their experiments, tubular specimens were made and loaded under varying 

conditions to prove that the degree of tension directly influences the part strength. Mertiny’s research 

concludes that higher tension improves strength in components under fiber dominated loading but the 

reverse is true for matrix dominated loading. 

Polini discusses the deviations in actual winding tension from planned tension caused by error in 

robot deposition paths and methods to estimate and compensate for the error. Polini points out that if 

actual winding is too loose, waves in the deposition direction, called marcels, may occur, whereas too 

tight of winding can damage the fiber and cause irregular compression in the part. Filament winding 

tension research is partially related to the proposed root winding research in that fiberglass is tightly 

wound around a mandrel, however, in filament and tape winding, the tension is applied directly to the 

fabric but the tension is applied to the stitching when pulling NCF. 

Residual stress is another common research topic in filament winding [15, 16, 17, 18]. Casari’s 

research created thick filament wound tubes using three different composites and three winding 

angles. Their research found that significant strains are revealed after cutting the samples and these 

stresses need to be accounted for during manufacturing. 

Lu conducted research on the stress induced by different amounts of tension applied during tape 

winding. Lu concluded that radial stress in wound parts can be tensile or compressive depending on if 

tape tension is increased, decreased, or kept constant throughout the layup. 

 Lee attributes residual stress to curing and experimented with two different “smart curing” methods 

[Figure 11] for thick 

composite flywheels. The 

results showed that both 

keeping the inside and outside 

ambient temperatures equal 

and heating from the mandrel 

produced lower stresses than 

the conventional cure from the 

outside only. 
Figure 11: Thick composite curing strategies [17] 



www.manaraa.com

10 
 

Filament winding is able to wind fibers in precise paths because it uses a computer numerically 

controlled deposition head. This creates very uniform parts with little handling and high process 

control [10]. With the tight fiber placement control and use of continuous fibers, filament winding can 

create parts with both high hoop and longitudinal strength depending on part geometry and winding 

path. Along with the benefits of computer and robotic control, comes complexity compared to 

traditional layup methods. Filament winding machines require path planning programming and many 

are equipped with multi-axis deposition heads depending on path and material. Many recent papers 

have been published about improvements in robotic equipment and programming for filament 

winding [14, 19, 20, 21]. 

Scholliers researched quality control for both a simple two axis filament winding machine and a 

robotic tape winding machine. Research is also continually being conducted to improve the path 

optimization and collision control of filament winding [19, 21, 22]. While improvements in filament 

winding over the last half century has made the process common practice for many tubular 

applications, the technology involved in filament and tape winding is not applicable for the root 

preform winding application. 

Another drawback filament winding 

has in creating root preforms, is the 

restraint on longitudinal fiber. The root 

section of a wind turbine blade requires 

a significant amount of fiber aligned 

with the z axis to provide axial strength 

and resist bending at the base. Although 

filament winding can lay fibers nearly 

concentric to the z axis [23], seen in 

Figure 12, the fibers must run the 

length of the mandrel and wrap around the ends to create the friction required for winding [11, 24, 25, 

26]. However, the tapered inner surface of the root requires longitudinal fibers that do not run the 

length of the mandrel. Because of this, filament winding cannot be used to build up the root end of the 

preform with longitudinal fibers. 

Figure 12: Polar Filament Winding [23] 
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Another automated fabric system 

is automated tape laying (ATL) 

and the slightly more versatile 

automated fiber placement (AFP) 

shown in Figure 13. Similar to 

filament winding, these systems 

pull fiber from a supply system 

and a controllable head deposits 

the fiber in the desired locations. 

Fiber placement machines do not 

necessarily require a rotating 

mandrel, however, and instead use 

multi axis robotic heads to 

conform the fabric to the mold. 

ATL places a single prepreg tape made of many tows onto low curvature surfaces and AFP uses many 

small prepreg tapes and is able to conform to more complex surfaces [27]. The fiber placement 

machines are able to cut the fabric during layup and change positions to start again [25]. Because of 

this, ATL or AFP machines would physically be able to make root preforms on a mandrel with the 

same fiber orientation as current preforms. However, these machines are again more complex and 

expensive than necessary for such a simple operation. Creating root preforms with a tape laying 

machine would be very time consuming taking several thousand tape strips even with a wide tape. 

In structural fiberglass components, the glass tows are specifically aligned to create strength in the 

desired direction. Winding and fiber placement machines align the tows individually during layup, 

but manufactured plies eliminate the need for complex machinery. In fabric sheets, large quantities of 

fiber tows are aligned as necessary within each sheet in many combinations of orientations. 

Depending on layup area, thickness, and fiber orientation required, a few NCF plies could replace 

hundreds of strips of fiber tape. In addition, complex layups would require advanced path planning 

and robotic control of fiber placement machines where a fabric ply need only be placed in the mold 

and smoothed out. Using fabric plies could potentially increase deposition rates by providing 

structure in premanufactured sheets [28], however, they are currently limited almost entirely to hand 

layups. 

Figure 13: Automated Fiber Placement [27] 
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The physical properties of fiberglass plies make them difficult for an automated system to manipulate 

[29, 30]. The plies often come in large sheets, especially in the case of wind turbine blades, and they 

can be difficult to handle and adjust appropriately. Getting a machine to hold, deposit, and smooth 

material of this size in even slightly complex molds is a challenging task. In addition to size, fabric 

plies are flexible, making them difficult to grasp and manipulate and promoting deformation. If the 

fabric is allowed to shift within an automated system, the tows can become misaligned and the fabric 

misshapen, defeating the purpose of the original ply design. 

There have been several conceptual stitched fabric layup automation machines in recent research. 

MAG has designed a Rapid Material Placement System (RMPS) that can theoretically unroll fabric 

over great distances at speeds up to 3m/sec [31]. The RMPS uses a gantry system able to clamp, 

unroll, and smooth fabric the length of a wind turbine blade. This system is still in testing. 

Various systems are also being investigated to grip, transport, and place composite fabrics [32] or 

looking into the draping effects of these fabrics [33, 34]. Kordi designed a system, shown in Figure 

14, to grab smaller plies of fabric using various gripping elements and a moveable frame to conform 

to mold surfaces. Many of the gripping systems investigated in fiberglass pick and place machines are 

adopted from textile robotic research [35, 36]. If a fabric manipulation machine similar to Kordi’s 

was made large enough to handle the 

root preform plies, it could 

potentially build a root preform in the 

exact style as the current layup. 

Unfortunately, many of these 

gripping systems can be damaging to 

fiberglass where the quality of the 

fabric is more critical than in textiles. 

A machine of this style would also be 

considerably expensive to purchase 

and program especially if several 

were needed to operate multiple 

molds to keep up with production. 

The design of the root preform winding machine is based on using the best aspects of several 

composite layup techniques while excluding the drawbacks of each. Like other winding systems, this 

Figure 14: Robotic pick and place machine [32] 
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is an automated approach to composite layup by winding fiber around a mandrel, but it will need to 

overcome filament winding’s inability to provide variable length fibers aligned with the winding axis. 

It is a nearly hands-free operation designed to provide a fast, precise layup, however, it will not 

require a complicated CNC deposition head. Similar to hand layup, this system will use NCF to take 

advantage of the pre-aligned fiber orientation of the fabric plies, but the plies will no longer require 

operator layup or a robotic pick and place machine. 
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Solution Methodology 

Winding long NCF plies can make root preforms faster, cheaper, and better than current processes. 

To prove this hypothesis, a machine must be created capable of winding large amounts of NCF semi-

helically around a mandrel and a fabric scheme needs to be prepared to create parts of the correct size 

and physical makeup. The proposed winding process must be capable of creating parts equivalent or 

better in cost and quality compared to the current layup process. 

Root Preform Winding Machine 

This research proposes to create a root preform winding machine designed to automate the entire root 

preform fiberglass layup. The new method will convert the current layup of manually dropping 

hundreds of plies into two female molds to automatically winding a limited number of plies around a 

single male mold. Workers would still be required for loading and unloading the machine and the 

infusion setup, but the majority of work currently being done would be hands free and done at a much 

faster pace. Ideally, the new winding process will turn layup times from hours to minutes and nearly 

eliminate labor. 

The machine is comprised of a rotating mandrel that pulls fabric from continuous fabric supply rolls. 

The mandrel shape is designated by the interior surface of an existing prefabricated root section in 

current production. This shape includes the straight section of the current built to aid in handling. By 

keeping the same surface for the 

mandrel shape, the goal is to create 

a root preform with the exact 

dimensions of a current root so it 

can be seamlessly incorporated into 

the current build. This idea can be 

seen in the cross-sectional drawing 

of both mold types shown in Figure 

15. The mold surface for creating 

the root preform changes from the 

OD to the ID, but as Figure 15 

shows, the shape of the glass 

remains identical. 

Figure 15: Comparing Mold Surfaces 
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To test the design considerations of the root preform winding method, a prototype machine was made 

to wind preforms scaled down from a wind turbine blade root currently in production. The goal of the 

experimental machine is to determine the feasibility of the root preform winding process. Figure 16 

gives the design plans for the prototype machine and Table 2 gives the dimensions in millimeters of 

the root preforms the experimental machine is designed to make. 

 

Table 2: Prototype Root Preform Dimensions (mm) 

OD ID T Wb Ws 

942.5 878.2 32.15 777.5 177.5 

 

Figure 16: Prototype Machine Features 
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Fabric scheme 

Presentation of fabric is one of the main differences between the proposed root preform process and 

the current one. In the existing process, operators lay approximately 100 precut fabric plies into a 

mold for each half of the root where the new process will only require one long ply for each supply 

roll. In order to get plies of NCF to wind around a mandrel from a limited number of supply rolls and 

build up an axisymmetric part of non-uniform thickness, they must be prepared to strict 

specifications. 

To minimize human intervention, manufacturing time, and material waste, the supply fabric plies 

should be kept as long as possible. If the fabric isn’t long enough to wind the whole part, the process 

would need to be interrupted to reload the supply rolls so it would be beneficial if the machine would 

only need to be set up once and allowed to wrap the entire root. 

The finished preform has a cylindrical outer surface, but the mandrel it is being created on has an 

increasing diameter. To make the mandrel shape work, the fabric used to create the preforms must 

build up the root end to the full thickness and taper down to a single ply at the tip end while keeping 

the outer surface of each layer concentric cylinders. Figure 17 shows the general shape of the winding 

supply fabric plies that will be able to create the desired root preforms. Also shown in Figure 17 is a 

representation of the fabric used in a current manual layup in female molds to show how the fabric 

design changes between the two processes. It should be noted that this figure is provided for the 

benefit of the reader and is not drawn to scale as the angle of the winding fabric can be as low as 0.1° 

and the manual layup fabric has 100+ plies. 

 

The fabric will wind from the smaller end (ws) to the larger end (wb), and the straight edge of the 

fabric will remain against the root face during the winding process while the opposite edge will 

Figure 17: Representation of supply fabric (not to-scale) 
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increase helically towards the tip end of the mandrel. With this pattern, each wrap will add a layer to 

the root end and extend the fabric farther towards the tip where it will eventually end with a thickness 

of one layer. This winding process is referred to in this research as semi-helical winding.  

The fabric will come from supply rolls pre-wrapped around supply bars that sit concentrically around 

the rotating axis unwinding onto the mandrel. In order to account for compression of the vacuum 

infusion, the fabric will need to be wound onto the mandrel under tension. If the fabric is wound as 

tight as it would be compressed by atmospheric pressure, it cannot be forced into a smaller space so it 

will not deform and waves will not appear. However, when a vacuum is pulled on loosely wound 

fabric, the inner layers would pull tight against the mandrel, and as the layers increase, there is more 

room to compress and the large diameter is forced into being a smaller diameter which collapses the 

fabric and forms waves. Figure 18 gives a visual explanation of this issue. At the same time, it would 

also be desirable to not wind too tightly in the case that it would inhibit infusion, add unnecessary 

residual stress, or create an undersized part. The physical limit of the applied tension is set by the 

strength of the fabric stitching. For fabric without warp tows, all tensile force in the warp direction of 

the fabric is applied to the stitching so extreme tension would destroy the fabric.  

 

To be able to replace the manual root preform process, the winding machine needs to create parts of 

the same dimensions as current preforms for proper incorporation into the rest of the blade. The 

critical dimensions of the root preforms are the OD and T. Figure 19 examines four scenarios of a 

root preform seating into a blade mold viewed from the root end of the mold and how variations of 

the OD affect the assembly. By winding around a mandrel, the interior surface will not change 

between preforms, however too much or too little fabric will cause the OD to not match the blade 

mold surface as shown in scenario 2 and 3 of Figure 19. Scenario 4 shows how cylindricity of the 

preforms must also be kept accurate for proper seating and alignment in the blade mold. 

Figure 18: Compression of fabric layers around a mandrel  
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To determine the ply dimensions, several decisions, measurements, and calculations must be made, 

the first of which is the fabric being used. To keep the same longitudinal and torsional strength 

properties as current production, the prototype machine will also use plies with tows aligned at ±45° 

and 0° to the z-axis of the blade. Because the fabric winds around the z-axis, traditional bias fabric 

will work for the ±45° tows, but a less traditional weft-uni will be needed to align the unidirectional 

tows along the z-axis. 

The layup pattern of the ply types is determined next. A root preform can use any of several patterns 

throughout the layup, including all of one type, alternating plies, an unbalanced quantity of types, or a 

combination of several patterns. The difference these schedules make is the number of supply rolls 

required to perform the pattern. For example, a root preform using a schedule of 1:1 (UD:Bias) would 

require one supply roll of each fabric while a schedule of 1:2 (UD:Bias) would have one supply roll 

of weft-uni and two supply rolls of bias all unrolling at once. If the layup is variable, additional rolls 

would need to be added to the machine that are fed into the layup intermittently. To show feasibility 

of the machine design, a layup schedule of 1:1 (UD:Bias) will be used in the prototype experiments. 

This will allow testing to be done with only two supply rolls, each with one length of fabric. 

Because the prototype machine makes parts scaled down from megawatt scale roots, the fabric weight 

chosen for this testing is also scaled down in an effort to best replicate winding a high number of 

layers around a male mold. This will better mimic a true root preform and test the capabilities of the 

machine. The fabric used for initial testing is weft-uni and bias NCF from Vectorply® at weights of 

490.3gsm and 425gsm respectively. 

Figure 19: Effects of poor preform dimensions on placement into the blade mold 
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Once the fabric type and layup 

pattern has been chosen, the final 

infused thickness of each layer 

needs to be determined. Although 

fabric manufacturers may provide 

this information, it is best to find 

it experimentally to assure 

accurate calculations. Figure 20 

shows how layers can settle 

differently in different layup 

patterns. For this reason, the 

fabric thickness should be 

calculated for each pattern used 

in the layup [34]. To find the infused thickness for the experimental fabric, 100 alternating layers of 

the weft-uni and bias fabric being used were stacked and infused. The thickness of the final infused 

sample is measured and the average layer thickness is found. Because the prototype machine is using 

a 1:1 ratio of glass patterns of similar weight, both types are declared to have equal thickness. For the 

prototype testing, the infused fabric thickness is 0.54mm. Using the fabric thickness and the final part 

thickness of 32.15mm, the number of layers required for the layup can be found as 59.5, which is 

rounded up to 60 layers.  

Based on the number of layers and the size of the mandrel, the length of fabric (l) required for the 

final root alone (excluding the flat section) can be calculated. The total length of fabric is found from 

combining the circumference of the mandrel as it increases with each layer starting with the ID of the 

root. This calculation is shown in Equation 1.  

 

  ∫  (    (   ))  
 

 

 
(1) 

Solving for this equation for the experimental fabric gives: 

 
∫  (       (      ))  
  

 

          
(1a) 

Figure 20: Fabric settling. Left: 2:1, Right 1:1 (UD:Bias) 
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The scaled root requires 171.6m of fiberglass. The same equation results in 604.8m of fabric for the 

full-scale root. 

Because of the flat section, additional fabric (r) must be factored into the supply roll length. All 

growth in the fabric length of each wrap is accounted for with the increase in diameter of the actual 

preform shape, so the flat section remains the same throughout the layup. The prototype mandrel has 

a 76.2mm flat section which adds 9144mm of fabric after 60 revolutions, or an additional 4572mm 

for each supply roll. Additional, non-tapered fabric (s) is also added to the end of each supply roll to 

provide spare fabric for process control. For the prototype machine, this is set at 3000mm which is 

slightly more than the circumference of the finished root. The final length (li) of each prototype 

supply roll ends up being over 93m as shown in Equations 2 and 2a. 

 
   

     

     
   

(2) 

   
                 

 
              (2a) 

Testing the 1:1 layup schedule will determine if the winding process meets the objective of proving 

that a machine can wind multiple types and many layers of semi-helically wound, woven fabric. The 

machine needs to demonstrate that it can physically do the task while showing that the parts can be 

made cost effectively and meet or exceed quality standards. Once this is proven, the full functionality 

and versatility of the machine can be verified by testing an unbalanced fabric schedule. 

Prototype 

This section of the paper discusses the design of the prototype winding machine shown in Figure 16 

and how it will be operated. The machine is equipped with a ½ HP Bison® gear motor to drive the 

mandrel and a controller to provide continuous, variable control. The motor controls the mandrel with 

a 10 tooth drive sprocket connected by ANSI 60 chain to a 70 tooth sprocket mounted on the mandrel 

drive axis. The motor can spin the mandrel at any speed between 0 and 6.25 RPM. 
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The mandrel is made of ¾” sheets of Medium-

Density Fiberboard (MDF) each machined by a 

gantry router to create a mold quality smooth 

surface [Figure 21]. The outer surface was then 

sanded smooth and coated with West System® 

epoxy to create a non-porous mold surface. A 

2in steel bar is mounted through the center of the 

mandrel as the drive axis and it is attached by 

steel plates on the ends of the mandrel.  

Figure 22 shows the features and dimensions of 

the prototype mandrel. The OD and ID are 

942.5mm and 878.2mm respectively, and the 

length is 828.3mm to allow for wb and ws 

dimensions of 777.5mm and 177.5mm and leave room for sealant tape. Additional features to the 

mandrel include the flat sections and the insert. 

 
Figure 22: Prototype mandrel design 

Figure 21: MDF mandrel 
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The first modification to the mandrel design is the addition of two flat sections running down the 

length of the mandrel on opposite sides The flat section is added to mimic the current layup and give 

sacrificial edges to the preform to provide an area to cut through without worry of damaging the 

actual root and aid in handling the preforms. Even though the trial preforms will not be lowered into a 

blade mold or cut back to half cylinders, a 76.2mm flat section was added to the mandrel to test this 

feature. 

 

The second alteration to the mandrel design is to aid in removal of the completed root. The natural 

draft of the mandrel could aid in removal of the completed root, however releasing the root from the 

mold may prove difficult with the current design of the mandrel because the uniform section towards 

the root end has no draft. To account for this, the mandrel design is modified to have a constant taper 

throughout the entire surface. To recreate the intended preform geometry, a removable insert is added 

to occupy the space that is removed for the draft (as shown in Figure 23). The insert is designed so it 

will be pulled off of the mandrel with the root after 

infusion. Once the root is off of the mandrel, the insert 

can be detached and reused depending on its condition 

after removal. The insert will be made with a semi-

helically wound warp-uni that is sanded smooth and 

sealed after infusion so it can be used as a mold surface. 

A cap is added to the mandrel for winding and infusion 

to keep the root face square and to provide a surface 

flush with the outer profile of the wound fabric. The cap 

also provides a surface that the vacuum bag can attach 

to. Figure 24 shows the design of the cap and how it 

Figure 23: Cross-sectional view of drafted insert and the geometry it is replicating 

Figure 24: Mandrel with cap attached 
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matches up to the preform profile. The prototype machine is actually designed with two caps, one for 

the drafted insert and another for the full preform layup. The insert cap matches the preform ID and 

the main cap matches the OD. Both caps are also made of MDF and are roughly 50mm thick to 

provide a wide enough surface for the sealant tape. To use each of the caps, they are bolted directly to 

the mandrel and sealant tape is inserted at the interface of the cap and the mandrel to keep air out of 

the infusion. 

The prototype machine is equipped with two fabric supply rolls, one holding weft-uni, the other 

holding bias. The supply fabric will be wrapped around a supply bar starting with the wider end and 

kept aligned on the supply bar so it will unwind even with the root end of the mandrel [Figure 25]. 

The supply bars are then mounted to the machine frame by pillow blocks on either side of the 

mandrel. The fabric needs to be wound even and tight on the supply bar so it comes off in the same 

way.  

To provide the fabric tension 

required to suppress 

compression of the wound root, 

tension is put directly on the 

supply rolls. To put the tension 

on the rolls, friction was 

applied to the supply bars by 

straps anchored to the machine 

frame and wrapped over each 

bar and adjusted by tightening 

the strap with a turnbuckle. The 

tension was adjusted during 

layup so the appropriate settings can be found to eliminate slack in the layup and avoid additional 

compression of the fabric after the vacuum is applied. 

Once everything is loaded onto the machine, the winding is ready to start. The end of the fabric must 

be attached to the mandrel to start the layup. The attachment is as simple as applying a small amount 

of spray adhesive on the insert and sticking the fabric to it. After the mandrel starts rotating, the 

friction around the mandrel will be sufficient for pulling the fabric from the supply rolls. 

Figure 25: Prepared fabric supply roll 
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The fabric continues to wind until the root reaches the desired thickness (T). The supply fabric is 

designed to reach the end of the semi-helical winding when T is reached. At this point, one supply 

roll is cut and the end is attached to the wound fabric with spray adhesive. The mandrel will then 

continue rotating, taking fabric from the last supply roll and causing it to overlap itself, at which point 

it will also be cut and adhered to the root. Having an outer surface all from one ply adhered to itself 

will stop the tensioned fabric from unwinding like a coiled spring.  

Preparation for infusion can also take advantage of the rotating mandrel by using it to help wrap the 

infusion material around the layup including peel ply, infusion media, sealant tape, spiral tubing, and 

vacuum bag. First, a layer of non-sanding peel-ply is wrapped around the fabric. Non-sanding peel-

ply gives the fiberglass a textured surface when the ply is peeled off so it doesn’t need to be sanded 

for any future adhesion. Then resin flow medium is wrapped around the mandrel to help resin flow 

over the fabric during infusion. Spiral tubing for both inlet and outlet resin tubing is wrapped around 

the mandrel near both ends to allow for resin to flow uniformly through the part from the root end to 

the tip end. Finally, sealant tape is run around the cap and the tip end of the mandrel and vacuum 

bagging is adhered. When the vacuum bag overlaps itself, sealant tape is attached between the two 

layers to finish the vacuum seal. Two resin inlet tubes are fed through the seal and into the spiral 

tubing around the cap and two vacuum tubes are set in the same way in the opposite spiral tube. This 

layup sequence is shown in Figure 26. 

 

The prototype machine has been designed with a removable mandrel so it can be infused vertically 

offline. The quantity of resin required for a root section would weigh too much for the part to be 

infused horizontally. Without a female mold, the weight of the resin would overcome the vacuum 

force on the underside of the mandrel so the resin would pool at the bottom and possibly deplete the 

top. To infuse, the root face will be on the lower end of the vertical mandrel and it will be pulled from 

bottom to top. This orientation uses the vacuum pump to pull against gravity where infusing from top 

to bottom would combine the two forces and pull resin too directly into the vacuum pump. To 

perform the infusion, the mandrel is set down vertically on a table that will hold the root and mandrel 

Figure 26: Cross-sectional diagram of infusion 
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on the cap without removing the drive axis. An additional advantage of a removable mandrel is that a 

single winding machine would be able to service several mandrels. Although the prototype machine 

only has one mandrel, a full-scale machine would be able to wind additional preforms while fully 

wound mandrels are offline infusing and curing. 

After being taken offline, vacuum tubes are connected to the vacuum pump and a drop test is 

performed to test the airtightness of the infusion. The fabric is then infused using Hexion® Epikote™ 

epoxy resin and Epikure™ curing agent. After the part is infused and cured, it is removed from the 

mandrel by being pulled from the root end. After removal, the full root will be cut into the individual 

preforms and measured with a FARO laser tracker to check their cylindricity and dimensional 

accuracy.  
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Testing 

After the prototype machine was built and the fabric was cut and prepared, several scaled root 

preforms were created to determine the feasibility of the new process. The following section describes 

the individual experiments and their results.  

To set the process up, a clean, 

empty mandrel is loaded on to the 

machine [Figure 27]. Basic mold 

setup processes used in the current 

preform layup would still be 

required such as mold cleaning and 

application of release agents. 

The cap matching the drafted insert 

profile is then bolted to the 

mandrel and sealant tape is used as 

an airtight gasket. The insert fabric 

is wound on the mandrel under 

tension using spray adhesive (3M Super 77®) to start and end the winding. The wound insert and 

matching cap are shown in Figure 

28. The insert was then put under 

vacuum and infused. After cure, 

the insert cap was removed and 

the insert was sanded down to the 

desired shape and sealed with 

West System® epoxy to create 

the sealed mold surface.  

The two supply rolls are then 

mounted equal distances away on 

either side of the mandrel and the 

drive bar and supply bars are 

aligned parallel to each other and 

Figure 27: Setup of winding machine 

Figure 28: Wound drafted insert 
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the layup cap is bolted on to the mandrel, again using sealant tape to keep air out of the infusion. The 

start of the supply fabric is adhered to the mandrel on the insert at the flat section, shown in Figure 

29. The winding is started at 0.67 RPM and tension set very low so the spray adhesive alone is strong 

enough to pull the fabric from the supply roll. Once the mandrel makes half a revolution, the fabric 

begins to overlap itself and the friction is high enough to pull stronger tension. There is no monitoring 

system for the supply fabric tension so it is simply tightened to the point of keeping the fabric 

between the supply roll and mandrel tight and the wound fabric nearly incompressible [Figure 30]. 

The mandrel speed was gradually increased throughout the layup as the winding continued to run 

without issue, and was maxed out at 2.5 RPM to finish the process at a decent speed.  

 

After the first trial root was done winding, both supply rolls were cut at the same time and adhered to 

the wound fabric. Because both supply rolls ended at the same time instead of a single fabric making 

a final wrap, the wound fabric relaxed and the outer layer unraveled roughly a quarter turn and it is 

unknown how much the inner layers moved. At this point, the fabric still appeared smooth and 

compact although slightly higher than the cap. 

Figure 29: Start of fabric winding 
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The infusion layers and vacuum 

bagging were then set up and the 

mandrel was moved off of the 

machine and tilted up vertically 

for vacuum infusion [Figure 31]. 

Unexpectedly, axial waves 

appeared in the fabric after the 

vacuum was applied. These 

waves are assumed to come from 

too little tension on the supply 

fabric and from the unwinding 

after finishing the process. 

The root was still infused despite the 

waves and a thorough infusion was 

achieved. After cure, the cap was 

removed and the root was attempted 

to be removed from the mandrel. 

The draft alone was not enough for 

the finished root to slide off the 

mandrel and being made of MDF, 

not much force can be applied to the 

mandrel to assist in pulling the root 

off. Instead, it was cut down the 

center of one of the flat sections and 

after making it through to the 

mandrel, the root came off easily 

and the drafted insert remained on 

the mandrel. Slight damage was 

done to the mandrel and the drafted 

insert during the cutting process, but 

this was easily repaired for the next 

test.  

Figure 31: Vertical infusion of wound root 

Figure 30: Machine during winding process 
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A second trial root was made to confirm that the process is capable of creating root preforms and also 

to try to remove some of the errors produced in the first trial. The machine was prepared in the same 

way for the second trial, however, adjustments were made with the fabric preparation and winding. 

The first change in the fabric was with the supply roll preparation. It is assumed that if the fabric is 

wound on the supply bar with high, even tension, it will help provide even tension when winding it 

from the supply to the mandrel, so the second set of fabric was wrapped much tighter on the supply 

bar and a larger effort was made to keep uniform tension on the fabric as it was wound on the bar. 

The supply bars were mounted much closer to the mandrel for the second operation to avoid pulling 

the fabric over a long distance. The unrolling tension was also greatly increased for the winding 

operation. This increased the tautness of the fabric between the supply roll and the mandrel and 

decreased the compressibility of the wound fabric noticeably compared to the first layup. 

The last change in the second layup was with finishing the winding. The bias fabric was cut and 

adhered to the wound fabric a full wrap earlier than the weft-uni. The final wrap with the weft-uni 

contained the wound part and stopped the root from unwinding itself. The finished second layup 

appeared much firmer than the first and it was flusher with the cap. 

After the layup was finished, 

the infusion was prepared in 

the same way as the first setup. 

In the second trial, however, 

no waves appeared in the 

fabric when the vacuum was 

applied and the wound fabric 

retained a smooth exterior 

through infusion and cure. 

Both wound roots were cut 

along the opposite flat section 

to create the preforms for 

inspection. Figure 32 shows a 

finished prototype root 

preform. 

Figure 32: Prototype Root Preform 



www.manaraa.com

30 
 

Results 

To get a closer look at the waves in the first root, one of the first two preforms was dissected through 

the uniform section to view a cross sectional view of a wave. Figure 33 shows the cross section and 

some key aspects of one of the worst waves. The height (a) and length (L) of the wave are pointed out 

equaling 7.2mm and 28mm, respectively, making an aspect ratio of 3.89. This would be too large of a 

wave and the part would be rejected. The depth of the wave is also marked in the figure, showing that 

it erupts about ¼ of the way through the layup. Because the second preform had no waves, it was not 

dissected. 

 

To quantify the prototype quality, the three main features 

of the preforms (OD, ID, and internal taper [displayed in 

Figure 34]) were measured with a FARO laser tracker. 

The first two preforms were measured only after the root 

was removed from the mandrel and cut apart, but the 

second root was also measured while it was still on the 

mandrel to check how the dimensions change without 

support from the mold. The preforms are also labeled A 

and B according to which half of the mandrel they were 

made on. Several hundred points were taken of each 

feature to compare them to a nominal shape and also 

measure the deviation from that shape. The OD and ID are 

measured as cylinders and the tapered section takes the 

shape of a cone. These values are presented in Table 3.  

Figure 33: Wave Dissection  

Figure 34: Preform features measured 
by FARO laser tracker 
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The most critical value presented in this data set is the OD Cylindricity. The measurements found an 

average cylindricity of 2.06mm over nearly a 1 meter diameter part, supporting the capabilities of the 

machine. Another value of interest is the discrepancy in OD measurements between side A and side 

B. Preforms 1A and 2A have similar OD values as do 1B and 2B, however there is an average 18mm 

difference in OD between the two sides. These values were presented to Steve Nolet, principal 

engineer at TPI composites and received positive feedback about the overall quality of the preforms
1
. 

Cost Comparisons 

The new root preform machine design must be economically feasible for blade manufacturing 

facilities to consider replacing their current layup procedures. This will need to be tested by any 

facility considering changing to the new process or preparing a new blade line by comparing all the 

costs and savings associated with winding root preforms including: material cost, time and labor 

savings, and machine cost. 

Material costs will be similar for both hand layups and mandrel wound layups. Because the new 

system proposes to create essentially identical root preforms, any difference in fabric will be 

negligible. Infusion materials will also have little to no change. The main change in material costs 

will be in material preparation and presentation. The supply rolls of the new system will need to be 

loaded both precisely and tightly where the current fabric is simply stacked up for operators to pull 

plies from. However, to make two traditional preforms, 200 plies must be cut, stacked and brought to 

the layup and the new machine will use one long ply for each supply roll. 

                                                          
1
 Personal communication 3/28/2011 

Table 3: FARO Measurements (mm) 
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The main benefit of the new system is in the time and labor savings. In the experiments, winding took 

under 30 minutes for 60 layers at a very slow, deliberate pace with a relatively small motor. In full 

production, a layup of 100 layers with 2 supply rolls is estimated to take roughly 15 minutes at a still 

conservative 3.3 rpm. The time required for infusion material setup, infusion, and cure for a fully 

wound root are expected to be nearly equal to that of each current preform. The system is also 

automated to the point that only one operator is required to monitor the machine and perform the 

loading and unloading. 

The labor savings of the new system will have to compensate for the cost of the machine. While this 

is not a complex system, it certainly has more components than the current stationary female mold. 

Similar to the current process, there will need to be several molds to keep up with production. The 

current and new molds are made with similar materials and precision and therefore are expected to 

have similar costs. Additional machine costs for the new process include the drive system for the 

mandrel, the tensioning rollers, supply bars and mounts, and the process control switch system.  

Although the machine cost is not specifically calculated, it appears that the time and labor savings of 

the new process will easily justify converting to the proposed system. 
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Full-scale considerations 

Although the prototype machine has proven itself feasible, some of the final machine features still 

need to be investigated before a full-scale machine can be constructed and put into production.  

The full-scale mandrel needs to be made of a mold quality material, most likely fiberglass. To aid in 

curing the root and mitigation of residual stress, heating elements should also be embedded in the 

mandrel. 

The next item to test is the removal of the drafted insert. This design adds both another layup step and 

variability in the design and the concept failed in the prototype testing. Two alternative processes are 

proposed to eliminate the need for the drafted insert. One option is to cut the root from the mandrel. 

As a means to circumvent cutting the mandrel itself, highly visible sacrificial guards would be inset in 

the flat section that would both protect the mandrel and notify the operator when the root is fully cut 

through. The damaged guards can be replaced for each layup. A second option would be to use a 

collapsible mandrel that the root could be pulled from. For short-term research, the sacrificial strip 

would be simpler and less expensive to test. 

For the full-scale system, more advanced fabric types and layup schemes can be tested to prove the 

versatility of the machine. An example fabric to test is triaxial fabric (triax) which has fiber tows 

aligned in three orientations. If a turbine blade manufacturer wanted to simplify a 1:1 (UD:Bias) 

layup further, the two supply rolls could be replaced with a single transverse triax (90°, +45°, -45°) 

and achieve the same strength characteristics. Because the current preforms use a manual layup to 

create a very thick part, the plies used for the layup are often chosen more for deposition rates than 

for quality. The deposition rates of the new winding machines are expected to be high enough that the 

marginal cost per layer will be almost negligible, and thinner fabrics of higher quality can be 

investigated. Whether by an increase in layup quality, or by using better fabric, there is potential for a 

decrease in the preform thickness safety factor. The thickness of the current preforms is set large 

enough to contain the stresses provided by the interaction of the blade and the T-bolts. If the root 

quality was increased, there would be less need to overbuild the root. 

Another item to be tested is a changing ply schedule within a layup. Machines running a variable 

layup require additional rolls that are fed into the layup intermittently. The calculations for a layup 

using an unbalanced schedule are slightly more complex than an even schedule. To determine the 

design of the supply fabric, the length of fabric required for each section of a single pattern must first 
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be calculated. Each pattern section is then divided by the number of supply rolls required for that 

pattern to give the length of each section of each supply roll. Equation 3 gives the length of each 

section of any ply. 

 

   
∫  (     (   ))   
  
  

                    

             
 

(3) 

An example of supply fabric for a full scale wound root with a schedule alternating every 25 layers of 

1:1 and 1:2 glass ratios is calculated to show how fabric for this type of layup would look. Equation 

3a shows the length of the second section of this layup. 

 

  
∫  (             )  
  

  
         

 
         

(3a) 

The cut fabric is shown in Figure 35, with lengths shown in millimeters. During winding, the two 

longer plies would start simultaneously. As these plies reached the second section, x, the third ply 

would need to be attached. At the end of section x, the shorter ply is cut and adhered to the mandrel, 

and section y is wound. Once section y is finished, the shorter ply would be attached again, and all 

three plies would be wound to completion. 

 

An alternative system is proposed for applying more controlled tension to the supply fabric. Simply 

restraining the supply fabric from unrolling was easy to set up and test, but it had some complex 

implications. With tension on the supply bar, the supply fabric tightened up on itself causing choppy 

unwinding and spontaneous relaxation. The force on the supply roll also decreases with its decrease 

Figure 35: Unbalanced Schedule Ply Representation (Not to-scale) 
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in diameter, and the length between the supply roll and the mandrel increase over time. A better 

option to provide tighter tension control and require less strict supply fabric preparation would be to 

apply the tension off of the supply roll, as close to the mandrel as possible. This could be done using 

sandwich rollers mounted close to 

the mandrel that apply 

appropriate, controllable tension 

to the fabric (shown in Figure 

36). While this is a more complex 

setup, there are less resulting 

variables and less preparation of 

the supply fabric. The fabric is 

fed through the rollers and 

attached to the mandrel in the 

same way as in the prototype 

testing and the pinch rollers are 

tightened when there is enough 

friction to pull the fabric from the 

supply rolls.  

Figure 37 depicts the critical forces concerning the alternative tensioning system. It shows that torque 

applied by the rollers (τR) acts against the torque from the rotating mandrel (τM). This puts tension (T) 

on  the fabric which compresses it against the mandrel. To eliminate waves in the preform, the 

compression created by the tensioning system must be equal to that of the compression caused by 

atmospheric pressure under vacuum (F). The amount of torque applied by the rollers will also need to 

be adjustable for different fabric types and widths requireing more or less tension. 

Figure 36: Tensioning sandwich rollers 
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The supply fabric should be designed to correctly end at max thickness (T), however, process control 

is necessary to be certain the preforms aren’t created too thick or too thin. A height sensor needs to be 

added to the final machine that stops the winding when it reaches T. Additional fabric will be added 

to the end of the supply rolls so if the fabric is wound tighter than the original design, the mandrel 

will keep rotating or if thickness reaches T earlier than expected, the sensor will trip and the winding 

will stop.  

 

Figure 37: Forces on tensioning sandwich rollers 
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Advantages 

In this research, an automated system capable of manufacturing root preforms cheaper and of higher 

quality than the current root prefab layup was designed and a scaled prototype machine was created to 

test the concept. The machine was successfully able to wind two stitched plies semi-helically around 

a mandrel to replace the current layup of several operators laying many individual fiberglass plies into 

a female mold. This system has many advantages over the current system, some of which include: 

 The automated winding system takes significantly less labor 

 

 Each winding operation creates two traditional preforms at once so setup, layup, infusion, and 

cure only need to be done once per blade 

 

 The speed of the winding provides opportunities for design for manufacturing such as the 

ability to test more precise fabric patterns 

 

 Winding replaces approximately 200 individual plies with one long ply for each supply roll, 

greatly reducing the cutting and handling of fabric 

 

 The new process nearly eliminates spray adhesives for a better infusion 

 

 The removable mandrel allows the roots to be infused and cured offline so the machine can 

service multiple mandrels 

 

 Winding under tension reduces the variability of vacuum compression and the gain in quality 

could result in a reduction of the safety factor required by the manual layup 

 

 Making the root as a single piece provides the opportunity to bond the full root in the blade 

shell instead of splitting it infusing a preform in each half 

 

 Winding NCF is the best option for automated winding of root preforms. Filament winding 

can’t deposit the necessary fiber orientations, and winding NDF is less complex, cheaper, and 

faster than ATL or AFP  
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